Numerical radius in Hilbert C✻-modules

نویسندگان

چکیده

Utilizing the linking algebra of a Hilbert $C^*$-module $\big(\mathscr{V}, {\|\!\cdot\!\|}_{_{\mathscr{V}}}\big)$, we introduce $\Omega(x)$ as definition numerical radius for an element $x\in\mathscr{V}$ and then show that $\Omega(\cdot)$ is norm on $\mathscr{V}$ such $\frac{1}{2}{\|x\|}_{_{\mathscr{V}}} \leq \Omega(x) {\|x\|}_{_{\mathscr{V}}}$. In addition, obtain equivalent condition $\Omega(x) = \frac{1}{2}{\|x\|}_{_{\mathscr{V}}}$. Moreover, present refinement triangle inequality $\Omega(\cdot)$. Some other related results are also discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

extend numerical radius for adjointable operators on Hilbert C^* -modules

In this paper, a new definition of numerical radius for adjointable operators in Hilbert -module space will be introduced. We also give a new proof of numerical radius inequalities for Hilbert space operators.

متن کامل

G-frames in Hilbert Modules Over Pro-C*-‎algebras

G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...

متن کامل

Hilbert modules over pro-C*-algebras

In this paper, we generalize some results from Hilbert C*-modules to pro-C*-algebra case. We also give a new proof of the known result that l2(A) is aHilbert module over a pro-C*-algebra A.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 2021

ISSN: ['1331-4343', '1848-9966']

DOI: https://doi.org/10.7153/mia-2021-24-71